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Quasi-Biennial Variations of Cosmic-Ray Intensities 

Abstract 

Owing to the atmospheric temperature effect on cosmic-rays, the 

so-called quasi-biennial ( or 26-month) oscillation in the stratosphere 

should be apparent in the hard component of cosmic-ray data at the 

ground. As it is estimated theoretically, the cosmic-ray muon data 

near the equator (Lae, 6'44 S) shows a significant biennial 

variation, the period of which seems longer than 26 months, but 

shorter than 30 months for 1954-1964. 

analysis of Huancayo (12' S )  ion-chamber data (Maeda and Suda) is 

a l s o  elaborated by choosing the five highest counting days in eacn 

The previous power spectrum 

montn, indicating a significant peak at the period of 24 months. 

similar analysis made for the ion-chamber data from Gcdhavn (69'5 N) 

A 

shows a very weak peak at 24 months for 1947-1959. It is concluded 

from present analyses tnat biennial variations in cosmic-ray intensity 

are predominantly of terrestrial origin, i.e., if the days of large 

extraterrestrial modulation ( such as geomagnetic disturbed days) are 

chosen no significant 26-month variation appears in cosmic-ray data. 
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Introduction 

Since its discovery in the tropical stratospheric wind system 

(Reed, 1960; Veryard and Ebdon, 1961), features of the biennial 

variation, or  the so-called 26-month oscillation in the earth's 

atmosphere have been revealed t0.a great extent in the past few 

years, except the theories to explain its origin and mechanisms 

(Reed, 1962, 1963, 1964 and 1963; Reed and Rogers, 1962, Staley, 

1963; Belmont and Dartt, 1964; Dartt and Belmont, 1964; Newell, 1964; 

Kriester, 1964; Sparrow and Unthank, 1964; Wescott, 1964, etc.). 

On the other hand, cosmic-ray intensities observed at the 

earth' s surface are continuously modulated not only by the astro- 

physical variations in outer space (particularly the magnetic field) 

but also by the atmospheric variations. 

of unstable components such as pions and muons, produced by incoming 

primary cosmic-ray particles in the upper atmosphere, intensities 

of cosmic-radiation at the ground change with variatlons of barometric 

pressure and of the atmospheric temperatures (Jgnnosy, 1950; 

Dauvillier, 1954; Heisenberg, 1963; Dorman, 1937). Therefore, the 

cosmic-ray muon data, which are more commonly called cosmic-ray 

meson data, or the hard component intensities measured at the ground 

Due to the decay processes 

c 
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. 

and corrected fo r  barametric effect ,  are very good indicators  of 

continuous atmospheric temperature var ia t ions,  provided that information 

about geomagnetic var ia t ions  i s  available.  

can expect t he  26-month variations occurring i n  the  upper atmosphere 

should be Tound a l s o  i n  the pressure-corrected cosmic-ray muon data.  

This is already shown by means of power spectrum analysis  of ion- 

chamber data from Huancayo (geographic l a t .  12' s ) .  
s t a t ion  i s  not c lose enough t o  the equator, t he  result i s  hardly 

s igni f icant  (as s h m  i n  Fig. 4 ,  Maeda and Suda, 1965). The purpose 

of t he  present paper is  t o  report  another more s igni f icant  detection 

of quasi-biennial var ia t ions  i n  cosmic-ray data  from t h e  near- 

equator s t a t i o n  (Lae, 6'44' s) which w a s  suggested i n  the  previous 

paper, but  not available a t  t h a t  t i m e .  

For t h i s  reason, we 

Since t h i s  

Meteorological Ef fec ts  on Cosmic -Ray Intens it ies 

The var ia t ion  of cosmic-ray in t ens i ty  a t  t he  ground due t o  the  

atmospneric temperature var ia t ion is an accumulated e f f e c t  of the  

d i f f e r e n t i a l  contribution from each layer  i n  the  atmosphere, which 

i s  not  only a f'unction of the  alt i tude of each layer  i n  the  

atmosphere, but a l s o  a function of t he  cut-off energy of observed 
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cosmic rays. The l a t t e r  depends on the geomagnetic and geographic 

locat ion of the observing s t a t ion  and on the geometric condition of 

the  measuring instrument, such as the thickness of shield and the  

type of cosmic-ray detector .  These re la t ions  are well-known both 

experimentally and theore t ica l ly ,  and can be expressed by a simple 

formula : 

- -  'I - J ~ ( E 0 , x )  6T (x )  dx 
I O  0 

where IO, 6 1  are the mean and the deviat ion of cosmic-ray in t ens i ty  

a t  the  atmospheric depth xo due t o  the temperature var ia t ion  6T a t  

the  depth x, respectively.  

Y(Eo,x) i s  cal led t h e  p a r t i a l  temperature coeff ic ient ,  which 

indicates the r e l a t ive  var ia t ion  of cosmic-ray muon in t ens i ty  with 

cut-off energy Eo a t  the  depth xo, due t o  1' C increase i n  the 
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l ayer  6x a t  x. The de ta i l s  of these coeff ic ients  as the function 

of Eo and x, as  well as  comparisons with the  experimental data 

have been discussed by many workers (Maeda and Wada, 1954; Trefall, 

1955; Wada and Kudo, 1956; Dorman, 1957; French and Chasson, 1 9 6 ;  

Matthews, 1959; Wada, 1961; Carmichael e t  a l .  , 1963 ; e tc . )  . It 

should be noted t h a t  the atmospheric temperature e f f ec t  on the 

cosmic-ray in tens i ty  consists essent ia l ly  of two par ts ;  one i s  

posi t ive and due t o  the change i n  production r a t e  of cosmic-ray 

muons with temperature var ia t ions i n  the upper atmosphere, cu(Eo,x) , 
and the other i s  negative, corresponding t o  the change of decay-rate 

of muons i n  the atmosphere, B(Eo,x). 

where cu(Eo,x) and -B(Eo,x) are  plotted against  x, f o r  Eo = 0.3, 10 

and 40 GeV. 

x. A s  can be seen from these figures,  the temperature coeff ic ient  

i s  mostly negative fo r  usual cosmic-ray data, the cut-off energies 

of which a re  l e s s  than the order of 0.5 Gev. On the other hand, 

the  posi t ive effect  dominates a t  high energies (par t icu lar ly  above 

the  ground production l e v e l  of cosmic-ray mesons, i .e. , above 200 mb 

l e v e l ) ,  because decay-rates of muons produced with energies higher 

than several  Gev i n  the atmosphere a r e  prac t ica l ly  negligible.  

These a re  shown i n  Fig. 1, 

Corresponding y(Eo,x) 's  a re  a l so  shown i n  Fig. 2 against  

It i s  known t h a t  the phase of 26-month osc i l la t ion  i n  the upper 

atmosphere d i f f e r s  with height, sh i f t ing  from higher a l t i t u d e  down- 

wards with a r a t e  roughly of the order of 1 km/month. This is  shown 



- 6 -  

i n  the upper curves i n  Figure 3 ,  i n  which var ia t ions of the s t r a t o -  

spheric temperature differences between 3' S and 28' N a r e  plot ted 

from data obtained during the period from 1931 t o  1961 a t  four 

d i f fe ren t  l e v e l s  above 100 mb (full l i n e s ) ,  and zonal winds a t  

Balboa, Panama (8' N )  a r e  a l s o  shown by a dashed l i ne ,  whose scale  

i s  indicated on the r i g h t  side with u n i t s  m/sec (Reed, 1965). 

Since the phase of 26-month o s c i l l a t i o n  and the  e f f e c t  of 

temperature var ia t ion  of cosmic-ray in tens i ty  a r e  d i f fe ren t  with 

height, t h i s  kind of information i s  most sui table  t o  see the 

corresponding var ia t ions i n  cosmic-ray i n t e n s i t i e s  a t  t he  ground. 

By using the  above-mentioned formula, we can see the amplitude 

and phase of 26-month cosmic-ray var ia t ion  f o r  the corresponding 

periods of years.  The calculations a r e  nade f o r  three d i f fe ren t  

cut-off energies, Eo = 0.3, 10 and 40 Gev, using y ( E o , x ) ' s ,  as shown 

i n  Fig. 3 (Maeda and Suda, 1965). 

It i s  found from previous calzidations t h a t  the phase r e l a t i o n  

between 26-month osc i l la t ion  i n  the upper atmospheric temperature 

and t h a t  of cosmic-ray in tens i ty  a t  the ground i s  not simple, but 

ra ther  reversed a t  low energies (Eo < 3.5 Gev) and a t  high energies 

(Eo >> 1 Gev). This r e s u l t s  from the d i f fe ren t  temperature e f f ec t s  

a t  low energies (negative) and a t  high energies ( p o s i t i v e ) .  The 

former corresponds t o  the  usual hard component data  such as those 

observed by a n  ion-chamber or  by the so-called cubical meson telescope, 
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while the l a t t e r  corresponds t o  the underground cosmic-ray in t ens i t i e s .  

These are  shown by two dash-dot l ines  i n  the bottom of Fig. 3 f o r  

Eo = 0.3 Gev (heavy l i n e )  and 10 Gev ( t h i n  l i n e ) ,  respectively.  It 

should be noted t h a t  although the  posi t ive temperature e f f ec t  

increases with increasing cut-off energy, there i s  an upper l i m i t  

(Maeda, 1960) and tha t  because of i t s  energy spectrum, cosmic-ray 

in t ens i ty  decreases rapidly with increasing cut-off energy, i . e . ,  

with depth underground.* 

A t  any ra te ,  it is concluded t h a t  i f  continuous measurements 

of cosmic-ray in tens i ty  had been made a t  the geographic equator f o r  

more than one decade, the 26-month var ia t ion  with amplitude of the 

order of 0.0% or the maximum deviation of the order of 0.1% can 

be detected even by ion-chamber data. I f  the underground cosmic- 

ray  measurements had been made continuously fo r  more than several  

years near the geographic equator, the 26-month var ia t ion with 

amplitude of more than 0.2% (which i s  the order of magnitude observed 

i n  the  diurnal  var ia t ions of cosmic-ray in tens i ty)  can a l so  be found 

i n  these data with an anti-phase t o  those of low energies (Maeda 

and Sub ,  1965). 

* For example, r e l a t ive  in tens i t ies  with cut-off energies Eo = 0.3, 
10 and 40 Gev are  roughly 1 : 0.l : 0..005, respectively.  
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Quasi-Biennial Variations of Cosmic-Ray Intensities 

By means of the power spectrum analysis applied for the ion- 

chamber data from Huancayo, Peru (12' s, geographic) and from 
Cheltenham, Maryland (39' N, geographic) for the period of more than 

20 years since 1937, the 26-month variations of cosmic-ray intensities 

have been hardly shown, if only geomagnetically quiet days (5-Q 

days in each month) are used (Maeda and Suda, 1965). 

is somewhat elaborated by choosing 5-H days in each month as 

shown in Fig. 4, where 5-H days means the five highest cosmic-ray 

intensity (counting) days in each month. 

rays are modulated by the change in solar emissions, their intensities 

in general decrease. In other words, the highest counting days 

correspond to the period when the effects of solar disturbances, 

such as the Forbush effect, are eliminated, or at least minimum. 

A similar analysis is also applied for the identical ion-chamber data 

from Godhavn, Greenland (69'23' N geographic) for the period 

extending from January 1947 to July 1959. 

Fig. 5, where the scale of the ordinate is taken arbitrarily, but 

is identical for all three curves. 5-Q and 5-H mean five quiet days 

and five highest counting days in each month, respectively. Comparing 

Figs. 4 and 3 ,  one can see that the biennial variation of cosmic-ray 

intensity at high latitude is very small as compared with those 

near the equator. 

This result 

When the galactic cosmic 

The results are shown in 
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and zonal wind analysis (shown in the upper portion of Fig. 3) ,  are 

shown by a full line in the bottom of Fig. 3,  where a heavy dashed 

line and dots represent the first and the second harmonics of this 

curve. 

Discussion 

The results shown in the previars section, particularly those 

shown in Figures 3, 4, 5 and 6, indicate consistently that the 

26-month variations in cosmic ray intensities are predominantly 

of atmospheric origin. In other words, 26-month periodicity is 

clearer in the geomagnetically quiet period than in geomagnetically 

disturbed days. 

the amplitude of the 26-month variation in the stratospheric 

temperature field is largest at the geographic equator above the 

100 mb level, which is of the order of 2' Cy and decreases with 

latitude, but increases again slightly beyond 20 degrees of latitude, 

indicating a minimum around 17 degrees in each hemisphere. It is 

also indicated that the phase of 26-month oscillation is reversed 

between these two regions, i.e., tropics and subtropics. 

According to the latest investigation (Reed, 1963), 

From the viewpoint of this present status of 26-month oscillations, 

the location of Huancayo is rather close to the region of minimum 
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A s  it w a s  suggested i n  the previous paper (Maeda and Suda, 19651, 

t h e  cosmic-ray data  from Lae, New Guinea (6'44' S )  i s  most promising 

t o  see the  26-month var ia t ion,  because t h i s  i s  the data from the 

s t a t i o n s  c losest  t o  t h e  geographic equator, where the var ia t ion  i s  

known t o  be maximum. 

The analysis  is  made as fo l lows:  (i) a l l  avai lable  data,  being 

corrected by a coef f ic ien t  -0.14%/mb obtained by the  standard 

s t a t i s t i c a l  method, a r e  folded by d i f f e ren t  lengths of month 

extending from 20 t o  30 months. 

then divided by the  number of folding, where the  t o t a l  avai lable  

data  consist  of two periods, one from Ju ly  1957 t o  October 1960, 

and the other from September 1962 t o  December 1964. 

shown in Fig. 6, where 5-Q and 3 - H  correspond t o  t he  data chosen 

from f ive quiet  (geomagnetically) days and f i v e  high counting days 

i n  each month, respect ively.  The bottom l i n e s  stand fo r  normalization 

i n t o  the same scale, taking the  average value as 10%. 

curves, one can see t h a t  the  period of b iennia l  var ia t ion  appearing 

i n  the cosmic-ray data  from Lae i s  somewhat longer than 26 months, 

but l e s s  than 30 months, f o r  1960-1964. 

standard deviations (dispersions of  each point i n  v e r t i c a l  s ca l e )  

a re  of the order of 0.1%. 

(ii) The folded sum of the data  i s  

The result i s  

From these 

It should be noted t h a t  t he  

Finally, the r e s u l t s  of 26-month folding of the  5 - H  cosmic-ray 

data from Huancayo, corresponding t o  Reed' s s t ra tospher ic  temperature 
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temperature var ia t ion,  bu t  within the region of t rop ic  osc i l l a t ion  

(not  i n  the subtropic) .  I n  t h i s  respect, cosmic-ray data from 

Makerere i n  Kampala, E a s t  Africa (0.33' N geographic, near sea l e v e l )  

are more useful  f o r  the  present analysis, though the  da ta  from Lae 

have shown already a s igni f icant  quasi-biennial var ia t ion  as shown 

i n  Fig. 6. The difference between the theo re t i ca l ly  estimated 

cosmic-ray in t ens i ty  var ia t ion  and those obtained from data, as 

shown a t  the bottom of Fig. 3 ,  i s  possibly due t o  t h e  following two 

reasons: 

Reed's and t h e  present analysis,  cosmic ray  data a r e  taken far from 

Reed's w y s i s .  (ii) Huancayo i s  rather close t o  the  subtropic 

boundary, while t heo re t i ca l  estimations a re  made f o r  near-equator. 

I n  t h i s  respect,  fur ther  analysis  o f  cosmic-ray data near t he  equator 

i s  desirable .  

(i) Though t he  period of analysis  i s  the  same f o r  both 

A s  indicated by recent aerological observations, the  quasi- 

b i enn ia l  var ia t ions  a re  pers i s ten t  even i n  the  high la t i tudes ,  

espec ia l ly  i n  the southern hemisphere, including the  Antarctic (Funk 

and Garnham, 1962; Angell and Korshover, 1964; Sparrow and Unthank, 

1964 ; Reed, 1963). Since high energy cosmic-ray data, pa r t i cu la r ly  

those measured underground, should be avai lable  a t  several  places 

i n  t h e  world, quasi-biennial var ia t ions i n  cosmic-ray phenomena 

s t i l l  seem worthy of investigation. 
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Finally, it s h m l d  be e~~phaoizzd. that si:izz the G S G ~ C ~ G  ~f 

cosmic-ray variations are terrestrial as well as extraterrestrial, 

they are separable, as shown in Figures 5 and 6. 

the present analysis show, however, the quasi-biennial variations 

in cosmic-ray data are predominantly of terrestrial origin. This 

conclusion seems to be consistent with the results of spectrum 

analysis of the quiet day geomagnetic variations at Huancayo (12' S 

geographic), Alibag (19' N geographic) and Apia (14' S geographic) 

given by Stacey and Wescott (1962). 

however, to check the consistency with other phenomena which have 

been discussed recently by many authors (Shapiro and Ward, 1962; 

Hope, 1963; Wescott, 1964; Newell, 1964 a.b; Linden, 1964; Reed, 

1965, etc.). 

Investigations of 

Further analysis seems necessary, 

._ 
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Figure Captions 

Figure 1 

Figure 2 

Figure 3 

Coefficients of the partial temperature e f f e c t  

( i n  Lg/g cm-' O C )  for  cosmic-ray in t ens i ty  a t  sea 

l e v e l  with cut-off energies, Eo = 0.3, 10 and 40 

Gev, p lo t ted  against  atmospheric depth x ( i n  

g an-*). 

pos i t ive  (production) e f f ec t ,  cr(E0,x) and negative 

(decay) effect ,  -fl(Eo,x), respect ively.  

Nl l ines  and dashed l i n e s  stand f o r  

Composite coeff ic ient  of t he  partial temperature 

e f fec ts  i n  l i n e a r  scale, y(E0,x) i n  '%/g 'C, 

derived from Fig. 1. 

The 26-month var ia t ions of t rop ica l  s t ra tospher ic  

temperatures (AT)* a t  Canton Island (3' S) and 

zonal wind at Balboa (8' N) given by Reed (1965) 

fo r  the period from 191 t o  1961. The full l i n e  

~~ ~~ 

* The temperature difference between Canton Island and f i v e  subtropical 
Since the  var ia t ion  a t  the la t te r  s t a t i o n s  (average l a t i t u d e  27' N ) .  

i s  very small as compared t o  the one at  the equator, AT can be 
regarded as the  va r i a t ion  a t  Canton Island. 
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Figure 4 

Figure 5 

in the lower portion is a similar expression of 

the ion-chamber data from Huancayo (12' S) based 

on 5-Q days in each month. Dashed line and dots 

are the first and the second harmonics of the 

full-line. 

Dashed lines are theoretical estimations correspond- 

ing to AT-curves in the upper portion of the 

figure computed by coefficients Shawn in Fig. 2, 

where heavy dash-dot and thin dash-dot lines 

correspond to the cut-off energies, Eo = 0.3 Gev 

and 10 Gev, respectively. 

Power spectrum (Periodogram) of Huancayo (12' S )  

ion-chamber data based on 5-H days in each month 

for the period from 1937 to 1961. 

scale is arbitrary and T in the horizontal scale 

is in months. 

The vertical 

Power spectrum of Godhavn (69O23' N) ion-chamber 

data for the period from 1947 to 1939. 

3-H stand for the data of five quiet days and 

five high counting days in each month. 

5-Q and 
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The folded-average curves of cosmic-ray muon data 

from Lae (6'44' S),  where horizontal  scale  

indicates the length of folding and v e r t i c a l  scale  

is r e l a t ive  cosmic-ray in t ens i ty  corrected fo r  

barametric e f fec t .  The meaning of 5-Q and 5-H 

m e  the same as  Fig. 5 .  The bottom curves 

correspond t o  the r e l a t ive  var ia t ion  with a mean 

value normalized t o  lo@. 

\ 
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